Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Arsenate reduction: thiol cascade chemistry with convergent evolution.

Identifieur interne : 000D65 ( Main/Exploration ); précédent : 000D64; suivant : 000D66

Arsenate reduction: thiol cascade chemistry with convergent evolution.

Auteurs : Joris Messens [Belgique] ; Simon Silver

Source :

RBID : pubmed:16905151

Descripteurs français

English descriptors

Abstract

The frequent abundance of arsenic in the environment has guided the evolution of enzymes for the reduction of arsenate. The arsenate reductases (ArsC) from different sources have unrelated sequences and structural folds, and can be divided into different classes on the basis of their structures, reduction mechanisms and the locations of catalytic cysteine residues. The thioredoxin-coupled arsenate reductase class is represented by Staphylococcus aureus pI258 ArsC and Bacillus subtilis ArsC. The ArsC from Escherichia coli plasmid R773 and the eukaryotic ACR2p reductase from Saccharomyces cerevisiae represent two distinct glutaredoxin-linked ArsC classes. All are small cytoplasmic redox enzymes that reduce arsenate to arsenite by the sequential involvement of three different thiolate nucleophiles that function as a redox cascade. In contrast, the ArrAB complex is a bacterial heterodimeric periplasmic or a surface-anchored arsenate reductase that functions as a terminal electron acceptor and transfers electrons from the membrane respiratory chain to arsenate. Finally, the less well documented arsenate reductase activity of the monomeric arsenic(III) methylase, which is an S-adenosylmethionine (AdoMet)-dependent methyltransferase. After each oxidative methylation cycle and before the next methylation step, As(V) is reduced to As(III). Methylation by this enzyme is also considered an arsenic-resistance mechanism for bacteria, fungi and mammals.

DOI: 10.1016/j.jmb.2006.07.002
PubMed: 16905151


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Arsenate reduction: thiol cascade chemistry with convergent evolution.</title>
<author>
<name sortKey="Messens, Joris" sort="Messens, Joris" uniqKey="Messens J" first="Joris" last="Messens">Joris Messens</name>
<affiliation wicri:level="1">
<nlm:affiliation>Brussels Center for Redox Biology, Department of Molecular and Cellular Interactions, Vlaams interuniversitair Instituut voor Biotechnologie (VIB) at the Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussel, Belgium. joris.messens@vub.ac.be</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Brussels Center for Redox Biology, Department of Molecular and Cellular Interactions, Vlaams interuniversitair Instituut voor Biotechnologie (VIB) at the Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussel</wicri:regionArea>
<wicri:noRegion>1050 Brussel</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Silver, Simon" sort="Silver, Simon" uniqKey="Silver S" first="Simon" last="Silver">Simon Silver</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:16905151</idno>
<idno type="pmid">16905151</idno>
<idno type="doi">10.1016/j.jmb.2006.07.002</idno>
<idno type="wicri:Area/Main/Corpus">000D28</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000D28</idno>
<idno type="wicri:Area/Main/Curation">000D28</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000D28</idno>
<idno type="wicri:Area/Main/Exploration">000D28</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Arsenate reduction: thiol cascade chemistry with convergent evolution.</title>
<author>
<name sortKey="Messens, Joris" sort="Messens, Joris" uniqKey="Messens J" first="Joris" last="Messens">Joris Messens</name>
<affiliation wicri:level="1">
<nlm:affiliation>Brussels Center for Redox Biology, Department of Molecular and Cellular Interactions, Vlaams interuniversitair Instituut voor Biotechnologie (VIB) at the Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussel, Belgium. joris.messens@vub.ac.be</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Brussels Center for Redox Biology, Department of Molecular and Cellular Interactions, Vlaams interuniversitair Instituut voor Biotechnologie (VIB) at the Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussel</wicri:regionArea>
<wicri:noRegion>1050 Brussel</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Silver, Simon" sort="Silver, Simon" uniqKey="Silver S" first="Simon" last="Silver">Simon Silver</name>
</author>
</analytic>
<series>
<title level="j">Journal of molecular biology</title>
<idno type="ISSN">0022-2836</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Arsenates (chemistry)</term>
<term>Arsenates (metabolism)</term>
<term>Arsenic (chemistry)</term>
<term>Arsenic (metabolism)</term>
<term>Bacterial Proteins (chemistry)</term>
<term>Bacterial Proteins (genetics)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Fungal Proteins (chemistry)</term>
<term>Fungal Proteins (genetics)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Glutaredoxins (MeSH)</term>
<term>Models, Molecular (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidoreductases (chemistry)</term>
<term>Oxidoreductases (genetics)</term>
<term>Oxidoreductases (metabolism)</term>
<term>Protein Conformation (MeSH)</term>
<term>Sulfhydryl Compounds (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Arsenic (composition chimique)</term>
<term>Arsenic (métabolisme)</term>
<term>Arséniates (composition chimique)</term>
<term>Arséniates (métabolisme)</term>
<term>Conformation des protéines (MeSH)</term>
<term>Glutarédoxines (MeSH)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Oxidoreductases (composition chimique)</term>
<term>Oxidoreductases (génétique)</term>
<term>Oxidoreductases (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Protéines bactériennes (composition chimique)</term>
<term>Protéines bactériennes (génétique)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Protéines fongiques (composition chimique)</term>
<term>Protéines fongiques (génétique)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Thiols (composition chimique)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Arsenates</term>
<term>Arsenic</term>
<term>Bacterial Proteins</term>
<term>Fungal Proteins</term>
<term>Oxidoreductases</term>
<term>Sulfhydryl Compounds</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Fungal Proteins</term>
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Arsenates</term>
<term>Arsenic</term>
<term>Bacterial Proteins</term>
<term>Fungal Proteins</term>
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Arsenic</term>
<term>Arséniates</term>
<term>Oxidoreductases</term>
<term>Protéines bactériennes</term>
<term>Protéines fongiques</term>
<term>Thiols</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Oxidoreductases</term>
<term>Protéines bactériennes</term>
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Arsenic</term>
<term>Arséniates</term>
<term>Oxidoreductases</term>
<term>Protéines bactériennes</term>
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Evolution, Molecular</term>
<term>Glutaredoxins</term>
<term>Models, Molecular</term>
<term>Oxidation-Reduction</term>
<term>Protein Conformation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Conformation des protéines</term>
<term>Glutarédoxines</term>
<term>Modèles moléculaires</term>
<term>Oxydoréduction</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The frequent abundance of arsenic in the environment has guided the evolution of enzymes for the reduction of arsenate. The arsenate reductases (ArsC) from different sources have unrelated sequences and structural folds, and can be divided into different classes on the basis of their structures, reduction mechanisms and the locations of catalytic cysteine residues. The thioredoxin-coupled arsenate reductase class is represented by Staphylococcus aureus pI258 ArsC and Bacillus subtilis ArsC. The ArsC from Escherichia coli plasmid R773 and the eukaryotic ACR2p reductase from Saccharomyces cerevisiae represent two distinct glutaredoxin-linked ArsC classes. All are small cytoplasmic redox enzymes that reduce arsenate to arsenite by the sequential involvement of three different thiolate nucleophiles that function as a redox cascade. In contrast, the ArrAB complex is a bacterial heterodimeric periplasmic or a surface-anchored arsenate reductase that functions as a terminal electron acceptor and transfers electrons from the membrane respiratory chain to arsenate. Finally, the less well documented arsenate reductase activity of the monomeric arsenic(III) methylase, which is an S-adenosylmethionine (AdoMet)-dependent methyltransferase. After each oxidative methylation cycle and before the next methylation step, As(V) is reduced to As(III). Methylation by this enzyme is also considered an arsenic-resistance mechanism for bacteria, fungi and mammals.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16905151</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>11</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0022-2836</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>362</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2006</Year>
<Month>Sep</Month>
<Day>08</Day>
</PubDate>
</JournalIssue>
<Title>Journal of molecular biology</Title>
<ISOAbbreviation>J Mol Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Arsenate reduction: thiol cascade chemistry with convergent evolution.</ArticleTitle>
<Pagination>
<MedlinePgn>1-17</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The frequent abundance of arsenic in the environment has guided the evolution of enzymes for the reduction of arsenate. The arsenate reductases (ArsC) from different sources have unrelated sequences and structural folds, and can be divided into different classes on the basis of their structures, reduction mechanisms and the locations of catalytic cysteine residues. The thioredoxin-coupled arsenate reductase class is represented by Staphylococcus aureus pI258 ArsC and Bacillus subtilis ArsC. The ArsC from Escherichia coli plasmid R773 and the eukaryotic ACR2p reductase from Saccharomyces cerevisiae represent two distinct glutaredoxin-linked ArsC classes. All are small cytoplasmic redox enzymes that reduce arsenate to arsenite by the sequential involvement of three different thiolate nucleophiles that function as a redox cascade. In contrast, the ArrAB complex is a bacterial heterodimeric periplasmic or a surface-anchored arsenate reductase that functions as a terminal electron acceptor and transfers electrons from the membrane respiratory chain to arsenate. Finally, the less well documented arsenate reductase activity of the monomeric arsenic(III) methylase, which is an S-adenosylmethionine (AdoMet)-dependent methyltransferase. After each oxidative methylation cycle and before the next methylation step, As(V) is reduced to As(III). Methylation by this enzyme is also considered an arsenic-resistance mechanism for bacteria, fungi and mammals.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Messens</LastName>
<ForeName>Joris</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Brussels Center for Redox Biology, Department of Molecular and Cellular Interactions, Vlaams interuniversitair Instituut voor Biotechnologie (VIB) at the Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussel, Belgium. joris.messens@vub.ac.be</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Silver</LastName>
<ForeName>Simon</ForeName>
<Initials>S</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2006</Year>
<Month>08</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Mol Biol</MedlineTA>
<NlmUniqueID>2985088R</NlmUniqueID>
<ISSNLinking>0022-2836</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001149">Arsenates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013438">Sulfhydryl Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N712M78A8G</RegistryNumber>
<NameOfSubstance UI="D001151">Arsenic</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001149" MajorTopicYN="N">Arsenates</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001151" MajorTopicYN="N">Arsenic</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="Y">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013438" MajorTopicYN="N">Sulfhydryl Compounds</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
<NumberOfReferences>90</NumberOfReferences>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2006</Year>
<Month>05</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2006</Year>
<Month>07</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2006</Year>
<Month>07</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>8</Month>
<Day>15</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>11</Month>
<Day>10</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>8</Month>
<Day>15</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16905151</ArticleId>
<ArticleId IdType="pii">S0022-2836(06)00855-2</ArticleId>
<ArticleId IdType="doi">10.1016/j.jmb.2006.07.002</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Belgique</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Silver, Simon" sort="Silver, Simon" uniqKey="Silver S" first="Simon" last="Silver">Simon Silver</name>
</noCountry>
<country name="Belgique">
<noRegion>
<name sortKey="Messens, Joris" sort="Messens, Joris" uniqKey="Messens J" first="Joris" last="Messens">Joris Messens</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D65 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000D65 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:16905151
   |texte=   Arsenate reduction: thiol cascade chemistry with convergent evolution.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:16905151" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020